Soichiro Kumano(熊野 創一郎)
Mail / Google Scholar / GitHub / arXiv
International Conference
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Wide Two-Layer Networks can Learn from Adversarial Perturbations
Conference on Neural Information Processing Systems (NeurIPS), vol. 37, 2024
[h5-index/2023 = 337]
Koki Mukai, Soichiro Kumano, Nicolas Michel, Ling Xiao, and Toshihiko Yamasaki
Adversarially Robust Continual Learning with Anti-Forgetting Loss
IEEE International Conference on Image Processing (ICIP), 2024
[h5-index/2023 = 66]
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Theoretical Understanding of Learning from Adversarial Perturbations
International Conference on Learning Representations (ICLR), 2024
[h5-index/2023 = 304]
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Theoretical Explanation for Generalization from Adversarial Perturbations
Conference on Neural Information Processing Systems (NeurIPS) Workshop on Mathematics of Modern Machine Learning, 2023
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Adversarial Training from Mean Field Perspective
Conference on Neural Information Processing Systems (NeurIPS), vol. 36, pp. 75097-75150, 2023 (Spotlight)
[h5-index/2022 = 309] [3.0% of all submitted papers or 11% of all accepted papers]
Koyu Mizutani, Haruki Mitarai, Kakeru Miyazaki, Ryugo Shimamura, Soichiro Kumano, and Toshihiko Yamasaki
Prediction of Seismic Intensity Distributions Using Neural Networks
IEEE Global Conference on Consumer Electronics (GCCE), pp. 424-425, 2022
[h5-index/2021 = 15]
Koki Mukai, Soichiro Kumano, and Toshihiko Yamasaki
Improving Robustness to Out-of-Distribution Data by Frequency-Based Augmentation
IEEE International Conference on Image Processing (ICIP), pp. 3116-3120, 2022
[h5-index/2021 = 60]
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Superclass Adversarial Attack
International Conference on Machine Learning (ICML) Workshop on Adversarial Machine Learning Frontiers, 2022
International Journal
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Sparse Fooling Images: Fooling Machine Perception Through Unrecognizable Images
Pattern Recognition Letters, vol. 172, pp. 259-265, 2023
[IF2022 = 5.1] [h5-index/2022 = 80]
Invited Talks
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Theoretical Understanding of Learning from Adversarial Perturbations
Symposium on Visual Computing (VC), 2024
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Adversarial Training from Mean Field Perspective
Forum on Information Technology (FIT), 2024
Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki
Theoretical Understanding of Learning from Adversarial Perturbations
Meeting on Image Recognition and Understanding (MIRU), 2024
Awards
- 2024年度 IBIS 学生最優秀プレゼンテーション賞 (The Outstanding Student Presentation Award at the Information-Based Induction Sciences Workshop (IBIS), 2024)
- 2023年度 IBIS 学生優秀プレゼンテーション賞ファイナリスト (Finalist for the Outstanding Student Presentation Award at the Information-Based Induction Sciences Workshop (IBIS), 2023)
- 2023年度 MIRUインタラクティブ発表賞 (Best Poster Award at the Meeting on Image Recognition and Understanding (MIRU), 2023)
- 2022年度 IE賞 (Best Paper Award at the Conference on Image Engineering (IE), 2022)
- 2022年度 東京大学大学院 情報理工学系研究科 電子情報学専攻長賞 (Dean’s Award from the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, 2022)
- 2020年度 東京大学 工学部 電子情報工学科・電気電子工学科 学科⻑特別賞 (Department Chair Special Award from the Department of Information and Communication Engineering and Department of Electrical and Electronic Engineering, The University of Tokyo, 2020)
- 2020年度 東京大学 工学部 電子情報工学科・電気電子工学科 優秀卒業論文賞 (Best Bachelor Thesis Award from the Department of Information and Communication Engineering and Department of Electrical and Electronic Engineering, The University of Tokyo, 2020)
Competitive Research Funds
- 2023年度 科学技術振興機構 戦略的創造研究推進事業 ACT-X (JST ACT-X 2023)
- Microsoft Research Asia D-CORE 2023
- 2023年度 日本学術振興会 特別研究員 DC1 (JSPS Research Fellowship for Young Scientist DC1 2023)
Media
- サイエンスZERO 最新研究から考える! ヒトとAIが“共生”する未来
- JSTnews 2024年3月号
- 東大新聞オンライン AIの安全性向上へ 鍵はネットワークの「幅」
- 日本経済新聞 東大、平均場理論を応用した敵対的訓練を解析
- 東京大学 プレスリリース 2023/12/04